跳至主要内容

Knowledge on stepper motors handle inertia mismatching

Inertia mismatch is the difference between the inertia of the system and inertia of the stepper motor. A large inertia mismatch is usually best avoided for machines run by stepper motors (nema 17 gearbox or nema 23 planetary gearbox). One, the stepper motor itself has inertia it must overcome, in addition to the inertia of the system it drives. Two, friction further affects inertia, and three, having too much torque from an oversized stepper motor poses its own set of problems.

Knowledge on stepper motors handle inertia mismatching


Inertia mismatch greatly affects how stepper motors operate. The motors cannot accelerate and decelerate rapidly with an extreme inertia mismatch. If they have sufficient torque, but an inertia mismatch is present, the load may not start or stop at the proper time or place. At its most extreme, inertia mismatch can cause skipped steps or non-functioning stepper motors … along with noise, vibration, and heat.

There are a few ways to handle inertia mismatch. One is simply to size and match motor and load and ensure that the load-to-rotor inertia ratio falls between 1:1 and 10:1 or close to it … with 3:1 being suitable for high-performance systems.

If for whatever reason this is not feasible, some techniques exist for handling excessive inertia mismatch. One approach is to drive the motor through long acceleration and deceleration periods so the motor doesn’t miss steps and nothing falls out of sync. One caveat: this degrades efficiency and throughput, because there’s more of a wait for getting to full speed and for coming to a complete shutdown. One fix is to use a properly designed gearhead on the motor. This can address inertia mismatches, though this introduces more design considerations and complexity.

https://forum.pjrc.com/threads/38420-Connect-100-steppers-to-Teensy?p=224307
https://www.letscontrolit.com/forum/viewtopic.php?f=2&t=3756&p=41513

评论

此博客中的热门博文

Advantages and Disadvantages of Permanent Magnet Stepper Motor

A stepper motor is an electro-mechanical device that actuates a train of step movements of a shaft in response to a train of input pulses. The step movement may be angular or linear. The step movement of the motor is according to the input pulse. The performance of a stepper motor — both in terms of resolution (or step size), speed, and torque — is influenced by construction details, which at the same time may also affect how the motor can be controlled. As a matter of fact, not all stepper motors have the same internal structure (or construction), as there are different rotor and stator configurations. Advantages and Disadvantages of Stepper Motor The advantages of a permanent magnet stepper motor are It is compact and small in size, which makes it useful in many applications Due to the absence of any external excitation, the losses are less Due to the absence of any external excitation, the maintenance is less. It can be connected to the external circuit, to control the speed of the...

How to control Nema 17 with M542T Stepper Motor Driver

The  M542T driver used in this project is disassembled from the same 3D printer. Few words about this The good part was that I knew I could control the stepper motor with this driver. The bad part is that it was necessary to make adjustments to control the motor to reach the desired result. Theoretically, I would have to connect the stepper motor to the driver, the driver to the Arduino, and then control the stepper motor without any problems. Things work differently than my expectations. The fact that I use a Bluetooth connection make a change in the driver’s behavior for normal operation. The M542T driver is a cheap hardware resource (~ 1EUR / piece) and can control stepper motors powered by a voltage between 8V to 35V. Until I explain the settings from the driver, I will start with the beginning – with the power supply. Working with A4988 To work, the M542T needs a 5V voltage source. All the project is powered by a 12V – 3A power adapter and an adjustable LTC3...

How to Choose the Right Pancake Stepper Motors for Your Needs

A step motor is a type of electric motor that uses a series of electrical pulses to move the rotor. The rotating rotor causes a linear actuator, which produces motion in one direction. The pancake stepper motor is a type of step motor that has the capability to rotate continuously in both directions without any need for periodic rotary encoder. It is also known as the "pancake" stepper because it resembles a pancake, with its flat shape and circular cross-section. This article discusses how this type of step motors work and their applications in industrial machinery such as 3D printers, CNC machines, and robotics. What Makes the Pancake Stepping Motor Different From Others? The pancake stepping motor is a type of electric generator that uses an electromagnet to produce electricity. It is also known as the pancake motor because it looks like a pancake when it is folded in half. It has been around since the 1970s, but it saw a surge in popularity after the Fuk...