跳至主要内容

General recommendations of Standard Stepper Motor

The Duet boards use bipolar stepper motor drivers. This means you can use stepper motors suitable for bipolar drive, which have 4, 6 or 8 wires. You cannot use motors with 5 wires, because those are intended to be driven in unipolar mode only. (Some unipolar motors can be made into bipolar motors by cutting a trace on a circuit board.)

Unless you will be using external stepper motor drivers, choose motors with rated current of at least 1.2A, and at most 2.0A for the Duet 0.6 and Duet 0.8.5, or 3A for the Duet 2.

Plan to run each stepper motor at between 50% and 85% of its rated current.
Size: Nema 17 is the most popular size used in 3D printers. Nema 14 is an alternative in a highly-geared extruder. Use Nema 23 motors if you cannot get sufficient torque from long Nema 17 motors.

General recommendations of Standard Stepper Motor


Avoid motors with rated voltage (or product of rated current and phase resistance) > 4V or inductance > 4mH.

Choose 0.9deg step motors where you want extra positioning accuracy, e.g. for the tower motors of a delta printer. Otherwise choose 1.8deg step motors.
If you use any 0.9deg/step motors, or high torque motors, use 24V power so that you will be able to maintain torque at higher speeds.

If using a highly-geared extruder (for example, an extruder that uses a flexible drive cable to transmit the torque from the motor to a worm reduction gear), use a short low-inductance 1.8deg/step motor to drive it.

评论

此博客中的热门博文

How to Choose the Right Pancake Stepper Motors for Your Needs

A step motor is a type of electric motor that uses a series of electrical pulses to move the rotor. The rotating rotor causes a linear actuator, which produces motion in one direction. The pancake stepper motor is a type of step motor that has the capability to rotate continuously in both directions without any need for periodic rotary encoder. It is also known as the "pancake" stepper because it resembles a pancake, with its flat shape and circular cross-section. This article discusses how this type of step motors work and their applications in industrial machinery such as 3D printers, CNC machines, and robotics. What Makes the Pancake Stepping Motor Different From Others? The pancake stepping motor is a type of electric generator that uses an electromagnet to produce electricity. It is also known as the pancake motor because it looks like a pancake when it is folded in half. It has been around since the 1970s, but it saw a surge in popularity after the Fuk

Advantages and Disadvantages of Permanent Magnet Stepper Motor

A stepper motor is an electro-mechanical device that actuates a train of step movements of a shaft in response to a train of input pulses. The step movement may be angular or linear. The step movement of the motor is according to the input pulse. The performance of a stepper motor — both in terms of resolution (or step size), speed, and torque — is influenced by construction details, which at the same time may also affect how the motor can be controlled. As a matter of fact, not all stepper motors have the same internal structure (or construction), as there are different rotor and stator configurations. Advantages and Disadvantages of Stepper Motor The advantages of a permanent magnet stepper motor are It is compact and small in size, which makes it useful in many applications Due to the absence of any external excitation, the losses are less Due to the absence of any external excitation, the maintenance is less. It can be connected to the external circuit, to control the speed of the

What drivers Can i use on NEMA 17 motor or NEMA 24?

Description Nema 17 motor  is not standard for electrical characteristics of the stepper motor. It is just faceplate and mounting holes standard to make it easier to interchange motors. Most likely you have to check from the specification that what is rated current for that motor and is it unipolar or bipolar one. Choose driver based on that. Note: Drive can always be more powerful than the motor, but you have to limit your current from the drive side. It’s also possible to use chopper drives with the less current rating, but then your motor runs underpowered. But one can definitely make assumptions on the motor size that NEMA 17 could use 1A – 2A current and  NEMA 23 motor  could use around 2A – 5A current. How to run a stepper motor without a microcontroller? It’s totally possible since the drive doesn’t care where it gets it’s stepping impulses. You only need some kind of source for pulses and direction. The simplest option would be to use a NE555 timer chip.